

Introduction

APP is an aircraft-performance calculation program, specifically designed to provide a fast and easy way to evaluate aircraft performance. Another major design requirement was to impose no restriction upon the type of aircraft that can be handled by APP. Due to the simple, self-explaining user interface, no training is required to use APP and even the manual is rarely used. The program features powerful built-in post-processing and export functions to further process the data if needed.

APP can accomplish a wide range of different tasks:

- Fast and easy evaluation of an aircraft design
- Comparison of different aircraft
- Competitor performance analysis
- Evaluation of design-changes
- Mission optimization
- Creating plots for flight manuals and marketing brochures
- Flight test and certification support
- Helping students to understand the impact of different parameters
- ...

Capabilities/Functionalities

The most important capabilities and functionalities of APP:

- Computation of aircraft **point performance**
- Computation of **mission performance**
- Optimization and variation of **mission-profiles**
- Detailed Take-off and Landing calculations
- Applicable to jets, turboprops, military & civil a/c, etc.
- Easy data input and manipulation
- Built-in powerful graphical post-processing
- Over 60 output parameters
- **4 unit systems** (SI, imperial, ...) for input and output
- **Export** of tables (excel) and plots

Flight Physics/Numerics

The physical and numerical principles behind APP were chosen to achieve accurate solutions while requiring only few computational resources:

- All calculations are based on 2 DOF point-mass equations
- No analytic simplifications or linearizations
- Mission integration and optimisation with Runge-Kutta (4th-order, fixed step)
- Using tabulated data depending on Altitude and Mach for thrust, C_Lvs C_D, C_L vs AoA, fuel-flow, stores, ...

APP has a modern and easy to use graphical interface. All computation modes are easily found and results can be generated quickly.

<u>Eile Edit View Window Help</u> <u>W</u> ¹ 2 2 3 2 3 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2
📔 💯 🐴 😂 🛃 🐇 🖧 🥱 🖓 🔋 [1] [2] [3] [4] 💫 🚟 F L 📞
🚽 📓 Mission Computation1 🔟 📓 VFR Flight FL85.mis 📓 SEP.acft 📓 LWF.acft 📓 Turn Rate Chart (SEP) 1 📓 Cruise Efficiency Chart.perf 🖉 🍷 📑
Description Aircraft Select Aircraft File
Select Aircraft Aircraft
Settings
Segment List File:
Computation
Result (Sheet) Manufacturer: Generic Co Welcome
Result (Chart) Model: LWF
Variant: Single Seat
Year: 1980 ACFT Aircraft Mission PERF Performance
Author: ALR 🔗 Autorate Author: ALR
Version: 2.0
Date: 10/12/2011 Create or Edit Create, Simulate and Create Performance
Comment: Example At Light-Weige an Aircraft Model Optimize a Flight Profile Charts and Tables
Do not show again Close
Ready CAP NUM SCRL #

The following examples should give you an impression of the data-input interface and the level of detail possible to achieve. Shown here is the main-program window and a mass data table.

🛒 APP 6.0.1 - SEP.acft					-									
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u></u>	<u> M</u> indow <u>H</u> elp													
🜌 🔁 🚘 🗔	አ 🖻 🕲 🖕 🗠 🖨 🎯 🔘 [1	I][2][3][4] ዀ 🧮 🛛 F	LN											
VFR Flight FL85	mis 📓 SEP.acft 国					▼ Ana								
General Data	Mass & Limits Mass, Limits, Basic Aircraft Data													
Mass & Limits	Data													
Aerodynamics	+ Add Clean	Mass Engine Aero Gear	Limit Mach Lim	iter AoA-G Limiter Description	n Sheet Chart									
Propulsion		Structure	1001	.g]										
Stores		Propulsion Group	0	[e										
Configuration	Rename	Equipment	0	g]										
	Duplicate	Mass Deviation	۹ D	g] = Standard Empty	1001 [kg]									
	Import	Fixed Op. Equipment	0	g] = Empty Mass	1001 [kg]	E								
		Unusable Fuel and Oil	0	.g]										
		Gun	0	g]										
		Removable Op. Equipment	٩ O	g] = Basic Mass	1001 [kg]									
		Usable Oil	0	g]										
		Crew	0	g]										
		Spec. Mission Equipment	0 (P	g] = Operating Empty	1001 [kg]									
		Ammunition	Q 0	g]										
		Payload	248	g] = Zero Fuel Mass	1249 [kg]									
		Fuel Mass	151	g] = Operating Mass	1400 [kg]									
Ready						CAP NUM SCRL								

APP - Aircraft-Data

Aerodynamic data:

APP - Aircraft-Data

Fuel Flow data:

The user can choose several pre-prepared standard-charts or calculate specific performance parameters:

Performance Parameters:

Standard Charts:

- Acceleration
- Climb (normal, best angle, best rate)
- Cruise (normal, best fuel flow, best specific range)
- Maneuver (maximum performance)
- Maximum Speed
- Stall Speed
- Specific Excess Power (SEP)
- Takeoff Acceleration

- G-Envelope
- SEP-Envelope
- Turn-Rate-Chart (const. Acc)
- Turn-Rate-Chart (const. Alt.)
- Turn-Rate-Chart (const. SEP)
- SEP-Chart (const Alt.)
- Thrust and Drag Chart

APP - Point-Performance Example

On the following pages point-performance-examples are presented, starting with a standard Turn-Rate-Chart:

APP - Point-Performance Example

To evaluate the effects of an engine upgrade, the user just has to change the new engine-mass and specify a thrustmultiplier:

After the calculation, over 60 parameters are available to be plotted in XY-Plots or presented in tabulated form. It is possible to edit the data and to customize the plots.

APP can calculate user specified missions and optimize them. Empty Fuel-Tanks can be dropped automatically. The following segments and optimizers are available:

Segments:

- Acceleration
- Climb (best angle, best rate)
- Climb (const Ma, EAS, CAS)
- Cruise (best SR, const Ma., opt. Alt)
- Descent
- Ground Operation
- Landing Roll
- Loiter (at best FF)
- Maneuver (const N_L, max N_L)
- Refuel
- Store Drop
- Take-off
- Tank Drop

Optimizers:

- Range Optimization
- Endurance Optimization
- Maximum Operating Range Optimization

To build your mission, simply choose a segment and specify the condition at which it should end. You can also specify the segment on that should be optimized by APP if you wish to do so.

ptimizer	Optimizer Settings						
 No Optimization Range Optimization Endurance Optimization Radius-of-Action Optimization 	(1) (2) s1 (e1 s2) (1) (a) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Mission / Mission / Segment + <u>A</u> dd	Segments Flight Profile s <u>* D</u> el Insert Rep Segment Name	olace 🔹 🔹	Segment stops at:		
	e1 7) Maneuver at Max. LF s2 11) Loiter ② 12) Cruise at Best SR e2 14) Descent Fuel at End of Mission 5 Fuel Mass at End of Mission 100 Distance at End of Mission 0 Precision of Optimizer 0.1	1) 2) 3) 4)	Ground Operation Takeoff Climb Climb at Best Rate	Cruise, Dry Cruise, Reheat Cruise, Reheat Cruise, Dry	Turns ▼ or at: None ▼	· 2 · 0	[tum]
		5) 6) • 7) • 8)	Acceleration Cruise at Mach Maneuver at Max. LF Store Drop	Cruise, Dry Cruise, Dry Cruise, Reheat Cruise, Dry	Time Step	5	[sec]
		9)	Maneuver at Max. LF)) Store Drop)) Loiter 2) Cruise at Best SR 3) Descent 4) Descent 5) Landing Roll	Cruise, Reheat Cruise, Dry Cruise, Dry Cruise, Dry Cruise, Dry Cruise, Dry Cruise, Dry Cruise, Dry	Power Setting Thrust Acceleration	100 43850.6 0	[%] [N]
					Climb Angle Climb Speed dT	0	[deg] [m/sec] [K]

The results can reviewed in tabulated form or be plotted as XY-Plots, combining any of the over 60 parameters.

The modular approach to define a mission enables you to easily setup complex (realistic) climb schedules:

Detailed view of climb schedule:

Due to the wide variety of charts and plots used in manuals, handbooks and so on, its not possible to have a template for all of them in APP. However, APP can significantly reduce the time required to generate such charts. The following two charts were produced by defining a mission-segment once, calculate it several times varying one parameter (payload, target altitude) and combine the results in one chart:

Time-To-Climb-Chart

Range-Payload-Diagram

- 4 Types of calculations: *Takeoff, Rejected Takeoff, Balanced Field Length, Landing*
- Regulation conform calculations respecting military and civil airworthiness: *MIL-STD-3013, FAR Part 23 & 25, EASA CS 23 & 25*
- All Engines Operative (AEO) and One Engine Inoperative (OEI) calculations
- Respecting runway dimensions as:
 Runway Length, Runway Altitude, Runway Slope
- Different runway conditions are available: Dry, Wet, Snow, Ice
- Calculations possible with or without afterburner

APP - Takeoff

- 2 Pilot techniques are available
- Calculate the ground run distance and the air distance
- Calculate regulated takeoff distance
- Tailstrike angle will be respected
- Takeoff time determination

APP - Rejected Takeoff

- Pilot reaction time will be respected
- Time needed to apply brakes and retract throttles is respected
- Determine refusal speed from an engine failure speed

APP - Balanced Field Length

- Graphical V1 Balanced Calculation
- Determine Shortes Possible Runway

- Determine a landing path from a given sink rate at touchdown
- Determine the needed landing distance

