pYAPP7 Documentation

Release 1.1
ALR Aerospace

Aug 19, 2020

Contents
1 Introduction 2
2 Installation 2
3 APP Command Line 3
4 Upgrading from pyAPP6 3
5 Aauthors 4
6 User Guide 5
6.1 Package Structure o e e e e e e e e e e e e e 5
6.2 Readingand Writing APPFiles. 5
6.3 Variables e e e 10
6.4 Mission Computations i Lot e e e e e e e e e e e e e e e e 12
6.5 Performance Charts L e e e e e e e e e e e e e 13
7 pyAPP7 Examples 14
7.1 Imports & CONSANts o o v i e e e e e e e e e e e e e e e e e e 14
T2 FIles . . o o e e e e e e e e e e e e e e 14
7.3 Mission Computation oL e e e e e e e e e e e e e e e e 20
7.4 Performance Charts o L e e e e e e e e e 26
8 Developer Interface 29
8.1 AircraftModel e e 29
8.2 MissionComputationFile L e 34
8.3 PerformanceChartFile e 36
8.4 Common Classes i e e e e e e e e e e 37
8.5 Supporting Classes v v v v i e e e e e e e e e e e e e e e e e e 37
8.6 DataTypes i i e e e e e e e e e 38
87 Tables e e e 39
8.8 Mission Computations v v v v it e e e e e e e e e e e e e e e e e e 41
8.9 Performance Chart Computations o v vttt it e e e e e 43
9 Version History 46
9.1 L.1(2020-08-17) . . v o vt e e 46
0.2 1.0 (2019-00-17) . . o o o e e e 46
Index 47

1 Introduction

pyAPP7 is a Python package to interact with ALR’s Aircraft Performance Program APP.

The current implementation of pyAPP7 is a file based interface to APP. pyAPP7’s classes enable to read and write
APPT7 files. Together with the command line interface of APP, pyAPP7 allows for automation of mission and
point performance computations. The results that are calculated and written by APP (as text files) can be read
with pyAPP7.

pyAPP7 is made to work with both Python 2 and Python 3. This was tested using Python 2.7 and Python 3.6.

@ python’

-F‘ Read
APP S e m—
* : Write pyAPP7
Read

Result - >

2 Installation

If you do not already have a Python distribution installed, ALR recommends to use a distribution that is pre-built
for windows and includes common modules such as numpy, scipy and matplotlib. Such a distribution is Anaconda,
available here: https://www.continuum.io/downloads

Installing pyAPP7 is straight forward, as for any python packge. Navigate to the pyAPP7 folder and open a
Windows command line (cmd). Install pyAPP7 by executing:

’python setup.py install ‘

This will add pyAPP7 to your active python distribution. To test the sucessful installation, open a python shell by
entering:

’python ‘

and then type:

’>>> import pyAPP7 ‘

If no error message appears, the installation was sucessful.

A second method is to either add the path to the pyAPP7 root folder in each script by modifying sys.path or
to add the path to the PYTHONPATH environment variable. For futher information, consult the official python
documentation on how to install modules: https://docs.python.org/2/install/#modifying-python-s-search-path

https://www.continuum.io/downloads
https://docs.python.org/2/install/#modifying-python-s-search-path

3 APP Command Line

APP7 offers a command line mode to execute a computation without using the Graphical User Interface (GUI).
pyYAPP7 has two classes that simplify the execution of APP from a Python script.

The command line mode of APP7 writes the results in ASCII format into a text file (.txt). This file can then be
read by pyAPP7.

To calculate a mission saved as myMission.mis, type:

’App7.exe -m myMission.mis

To calculate a Performance Chart saved as myChart.perf, type:

’App7.exe -pp myChart.perf

4 Upgrading from pyAPP6

If you have existing pyAPP6 based scripts, updating to APP7 and pyAPP7 usually requires only the two following
steps:

* Make sure your APP aircraft, performance and mission files were saved with the latest APP7 GUI version.

tL)

* Replace all occurrences of pyAPP6 in the import statements (“from pyAPP6 import ...
pyAPP6”) with pyAPP7.

or “import

With these two changes, most code should be backwards compatible. However, in order to improve the code
readability, quality and usability of pyAPP, some breaking changes were necessary.

The following list shows some of the issues that might be encountered when porting your code from pyAPP6 to
pyAPP7:

* The unit conversion variables in the module “Units.py” have been renamed (the underscore prefix from
pyAPP6 was removed in pyAPP7).

* The APP custom data type classes have been moved from “Files.py” to a new module “Datatypes.py”.

* The name of the variable for the path to the APP execuatble was renamed from APP6Dir to APP7Dir (in
the Mission and Performance module).

¢ All functions related to file parsing in “Files.py” and “Global.py” have been moved to the module “File-
Functions.py”.

* Variable indices for performance and mission results have been changed as more variables have been added
to the APP parameter list from APP6 to APP7. The database class automatically handles this, but any script
with indices hard coded in will need to be updated during a version upgrade from pyAPP6 to pyAPP7.

 Propeller data is stored within the PropThrust class in pyAPP6 while pyAPP7 has a unique propeller class
which is a member of the PropThrust and PropElectricThrust classes.

* In the class MisOptData, the variable “optimizer” has been renamed to “solver”. The old function names
and dictionary keys to access the data have been kept for backwards compatibility.

* Functions to access the mass have been moved from the class “Mass” to “Config”.

5 Authors

ALR-Aerospace:
* Marc Immer
* Micha Brunner
e Philipp Juretzko

* Vito Colangelo

6 User Guide

This user guide to pyAPP7 is structured into four parts. First, an overview over the package strcuture is pro-
vided. The second section describes how to read and write APP files (aircraft, missions and performance charts)
using Python. The last two sections describe how to execute APP’s mission computations and performance chart
computations by using Python and parse the results written by APP.

6.1 Package Structure

The pyAPP7 package comprises the following modules:

Files Classes for Reading and Writing APP Files.

Datatypes Classes defining APP sepcific, custom data types

Mission Classes for executing Mission Computations and reading the results.

Performance Classes for executing Performance Charts computations and reading the results.
Database Helper class to read APP’s string table.

Global Constants as used in APP.

Units Unit conversion factors as used in APP.

6.2 Reading and Writing APP Files

; -
Welcome &J

: M| Mission PEHF_g,Jl Performance
‘@ Arcraft h y Computation hd Charts h

Create or Edit Create, Simulate and Create Performance
an Aircraft Model Optimize a Flight Profile Charts and Tables

[Do not show again

For each APP7 filetype, pyAPP7 offers a class to read, manipulate and write a file. The classes are located in the
Files module:

APP File pyAPP7 Class

Aircraft (.acft) Files.AircraftModel

Mission Computation (.mis) | Files.MissionComputationFile
Performance Charts (.perf) Files.PerformanceChartFile

The classes are located in the Files module:

class pyAPP7.Files.AircraftModel
Holds the APP7 aircraft model that is used to read and write APP .acft files

Each type of data (Mass&Limits, Aerodynamcis, Propulsion, Stores) is stored in two lists: one list contain-
ing names and one list containing data. These two lists have to have the same length. The configurations
are built by using these list indices. Take proper care when manipulating these lists manually and update
the ‘ProjectAircraft’ (m_Prj).

Examples

The best way to create an instance of an AircraftModel is to use the classmethod fromFile:

from pyAPP7 import Files

acft = Files.AircraftModel.fromFile (r'myAircraft.acft’')

Variables
* m_GeneralData (GeneralData)— General data about the aircraft
e text (Text)— Content of the comment text box in ‘General Data’

* configName (I1ist [str]) — list holding the names of the Mass&Limits datasets
(‘Config’ classes)

* aeroName (Iist[str]) — list holding the names of the Aerodynamics datasets
(‘Aero’ classes)

* propulsionName (list [str])—listholding the names of the Propulsion datasets
(‘PropulsionData’ child classes)

* storeName (list[str]) — list holding the names of the Store datasets (‘Store’
classes)

* m_config (list[Config])—listof the Mass&Limits datasets (‘Config’ classes)
* m_aero (list [Aero]) - list of the Aerodynamics datasets (‘Aero’ classes)

* m_propulsion (list[PropulsionData]) — list of the Propulsion datasets
(‘PropulsionData’ child classes)

e m_store (1ist[Store])— list of the Store datasets (‘Store’ classes)

*m Prj (ProjectAircraft) — Contains the Configurations and Store Configura-
tions

class pyAPP7.Files.MissionComputationFile
Reads an APP .mis file

This class reads an APP mission computation file. Most of the data is stored in a ProjectAircraftSetting
object (aircraft configuration and stores) and a MissionDefinition object (initial conditions, list of segments).
When manipulating mission files, consult the source code and documentation of these two classes.

Note: Data for APP’s “Parameter Study” computation mode is read as well (into the variationData at-
tribute). However, APP’s command line mode does not support this computation type

Examples

The best way to create an instance of a MissionComputationFile is to use the classmethod fromFile:

from pyAPP7 import Files

mis = Files.MissionComputationFile.fromFile (r'myMission.mis")

Variables
* text (Text) — Description text
* name (str)—name of the mission computation

e author (str) - name of the author of the mission file

* aircraftpath (str) — path to the aircraft, either relative (to the location of the mis
file) or absolute

* projectAircraftSetting (ProjectAircraftSetting) — holds the used
configuration of the aircraft and settings of stores

* misDef (MissionDefinition)— Holds the initial conditions and the list of seg-
ments

* resData (ResArrayData) — Holds the computation type (CMP_MISSION or
CMP_MISSIONVAR)

* variationData (VariationData)— Holds data for the Parameter Study mission
computation type

class pyAPP7.Files.PerformanceChartFile
Reads an APP .perf file

This class reads an APP performance chart file. Most of the data is stored in a ProjectAircraftSetting
object (aircraft, configuration and stores), a FlightData object (initial conditions and flight state) and a
PointPerfSolver child class object (specific data, related to the type of performance chart).

Note: Not all types of point performance charts can be computed by the APP command line mode. See
documentation for valid types.

Examples

The best way to create an instance of a PerformanceChartFile is to use the classmethod fromFile:

from pyAPP7 import Files

chart = Files.PerformanceChartFile.fromFile (r'myPerfFile.perf'")

Variables
* text (Text)— Description text
* name (str)—name of the mission computation
e author (str) - name of the author of the mission file

* aircraftpath (str)— path to the aircraft, either relative (to the location of the perf
file) or absolute

* projectAircraftSetting (ProjectAircraftSetting) — holds the used
configuration of the aircraft and settings of stores

 flightData (FlightData)— holds the flight state (initial conditions)

e perf (PointPerfSolver) — instance of a child class of PointPerfSolver, defines
the type of performance chart

NExtReal

APP defines two custom data types: NExtReal and XTables. When using pyAPP7 to manipulate APP files, it is
important to understand these data types.

NExtReals are recognizable in the APP user interface by a text followed by a value and a unit:

MNumber of Engines 1 [
Thrust Line Angle 0 [deg]

class pyAPP7.Datatypes.NExtReal
APP datatype that wraps a float and allows to specify a label, type of variable (through an index string) and
indicate if the value is a limiter

Variables
* xx (float) — value of variable
* label (str) - label of the value, e.g. ‘[Mach]’
* realIdx (str)—index (type) of variable, e.g. ‘REAL_MACH’

* limitActive (int)— 0 or 1, depends on whether the variable has an active limit.
E.g used for Max. Take-Off Mass

Note: use readASCIILimited and write ASCIILimited if the variable is a limited value.

Examples

When using pyAPP7 to read APP files, usually no direct use of this type is needed. This information is
mostly for developers/maintainers. The text format of a simple, non-limited NExtReal looks like this:

[Mach]
REAL_MACH
0.985

This is parsed using readASCII with the flag full=True. The full flag has to be set to True to read the index
string ‘REAL_MACH’.

>>> val = NExtReal ()
>>> f open ('path to text file')
>>> val.readASCII (f, full=True)

resulting in the following attributes:

val.xx = 0.985

val.realldx = 'REAIL_MACH'
val.label = '[Mach]'
val.limitActive = 0

If the text format has no index string,

[Mach]
0.985

readASCII is called with with the flag full=False:

>>> val = NExtReal ()
>>> f = open('path to text file')
>>> val.readASCII (f)

XTable

XTables are used everywhere you see a spreadsheet-like table in APP. pyAPP7 uses the numpy module to store
data tables. numpy offers a lot of functionality to manipulate arrays. pyAPP7 defines four different tables, with
increasing dimensionality: X0Table, X1Table, X2Table and X3Table.

The X0Table is used for one-column data ranges, for example in performance charts for the X-Range and Param-
eter range.

class pyAPP7.Datatypes.X0Table
Holds a 1D table (data range)

Variables
* data (1ist [str])— Table data with table factor and interpolation settings
* table (ndarray) — numpy array of shape (N,1)
* label (str)— Header string
* X0Typ (str)— APP variable type

The X1Table is a simple two-column table. An example would be the Mach limit or CLmax table. The data is
stored in a two-dimensional numpy array.

class pyAPP7.Datatypes.XlTable
Holds a 2D table

Variables
* data (1ist [str]) - Table data with table factor and interpolation settings
* table (ndarray)— numpy array of shape (N,2)
* label (str)— Header string

The X2Table is a list of two-column tables. An example would be the induced drag tables or the max. thrust
tables. The data is stored in a list of two-dimensional numpy arrays (fable attribute). Each table also has a value
(for the induced drag table that would be a Mach number). The values are stored in the value list. The table and
value list have the same length and same ordering.

class pyAPP7.Datatypes.X2Table (embedded=False)
Holds a list of 2D tables

Variables
* data (list[str])— Table data with table factor and interpolation settings
* table (list [ndarray]) - list of numpy arrays of shape (N,2)
e value (1ist [float]) - value of each table
* label (str)— Header string

¢ embedded (bool) — True if table is embedded in an ‘X3Table’. Disables read-
ing/writing of header (data and label)

The X3Table class is used in APP for the fuel flow table. The X3Table consists of a list of X2Tables and corre-
sponding values.

class pyAPP7.Datatypes.X3Table
Holds a list of X2Tables.

This class holds a list of X2Tables and a value for each table.
Variables
* data (list[str])— Table data with table factor and interpolation settings
* table (I1ist [X2Table]) - list of X2Table instances

e value (1ist [float]) - value of each table

* label (str)— Header string

6.3 Variables

When executing APP via the command line, the user can specify what variables will be written in the output result
file. By default, pyAPP7 uses the included ParameterList_All.par file to specify the variables. The ouput data is
stored in a large numpy table, and the variable can be best accessed by it’s index. The following table presents the
current mapping of indices to the variables when using the default parameter list file.

Index | Variable Name (SI) (British)
0 Acceleration [m/sec2] [ft/sec2]
1 SEP (Accel) [m/sec2] [KTS/s]
2 X-Acc. [m/sec2] [ft/sec2]
3 Z-Acc. [m/sec2] [ft/sec2]
4 Advance Ratio [-1 [-]

5 Altitude [m] [ft]

6 AoA [deg] [deg]

7 Attitude [deg] [deg]

8 Battery Energy [kJ] [Wh]

9 Battery SOC [%] [%]

10 Propeller Beta [deg] [deg]

11 CAS [m/sec] [nm/hr]
12 CD [-] [-]

13 CDO [-] [-]

14 CDi [-] [-]

15 CDs [-] [-]

16 CL [-] (-]

17 CL/CD [-] [-]

18 CLmax [-] [-]

19 CO2 Mass [kg] [1bs]

20 Thrust cos(AoA+sigma) [N] [1bf]

21 CP [-] [-]

22 (M/SFC)(L/D) [-] [-]

23 CT [-] [-]

24 Density [kg/m3] [slug/ft3]
25 Distance [km] [nm]

26 Drag [N] [1bf]

27 Drag Area [m2] [ft2]

28 dT [K] [K]

29 EAS [m/sec] [nm/hr]
30 Energy Height [m] [ft]

31 Ekin [Nm] [Ibf ft]
32 Epot [Nm] [1bf ft]
33 Energy Specific Range [m/]] [m/]]
34 Etot [Nm] [Ibf ft]
35 Friction Force [N] [1bf]

36 Fuel Flow [kg/sec] [Ibs/hr]
37 Fuel Mass [kg] [1bs]

38 Fuel Percent [%] [%]

39 Fuel Percent (Internal) [%] [%]

40 Climb Angle [deg] [deg]

41 Generator Power [%] [%]

42 Ground Force [N] [1bf]

43 Load Factor [-1 [-]

continues on next page

10

Table 1 — continued from previous page

44 Lift [N] [1bf]

45 Lift Area [m2] [ft2]

46 Placard Mach [-1 [-]

47 Mach [-] [-]

48 Mass [kg] [1bs]

49 Max. Thrust [N] [1bf]

50 Min. Thrust [N] [1bf]

51 Motor Eta [%] [%]

52 Motor Torque [Nm] [1bf ft]
53 Payload [%] [%]

54 Power Setting [%] [%]

55 Power Consumption [W] [W]

56 Power Required [W] [shp]
57 Pull-Up Rate [deg/sec] [deg/sec]
58 Pressure Altitude [m] [ft]

59 Pressure [N/m2] [Ibf/ft2]
60 Propeller Efficiency [%] [%]

61 Dynamic Pressure [N/m2] [Ibf/ft2]
62 Engine Revolution [rpm] [rpm]
63 Seg. CO2 Mass [kg] [Ibs]

64 Seg. Dist. [km] [nm]
65 Seg. Fuel [kg] [Ibs]
66 Seg. Time [min] [min]
67 SEP [m/sec] [ft/sec]
68 Configuration Nr. [-1 [-]

69 SFC [kg/(sec N)] | [Ibs/(hr Ibf)]
70 Shaft Power [W] [shp]
71 Speed of Sound [m/sec] [ft/sec]
72 Specific Range [km/kg] [nm/Ibs]
73 Reference Area [m2] [ft2]

74 TAS [m/sec] [nm/hr]
75 Temperature K] K]

76 Thrust [N] [1bf]

77 Time [sec] [sec]

78 Turn Radius [m] [ft]

79 Turn Rate [deg/sec] [deg/sec]
80 T/Tmax [-] [-]

81 Turns [turn] [turn]
82 Velocity [m/sec] [nm/hr]
83 Minimum Unstick Speed [m/sec] [nm/hr]
84 Minimum Unstick Speed (CAS) | [m/sec] [nm/hr]
85 Stall Speed [m/sec] [nm/hr]
86 Stall Speed (CAS) [m/sec] [nm/hr]
87 Vx [m/sec] [nm/hr]
88 Climb Speed [m/sec] [ft/sec]

11

6.4 Mission Computations

The Mission module, specifically the class MissionComputation, is used to run the APP command line mode for
mission computations and parse the result text file.

class pyAPP7.Mission.MissionComputation (APP7Directory="C:\Program Files
(x86)\ALR Aerospace\APP 7 Professional
Edition")

Class to execute APP and subsequently load the results.

This class is a helper class to execute APP mission computations. After creating an instance of this ob-
ject, execute the ‘run’ function. The result will be loaded into the ‘result’ attribute. ‘result’ is of type
MissionResult, see the documentation of the MissionResult class for further details.

Note: The ‘Parameter Study’ computation type can not be computed with the APP command line mode.

Examples

This example shows how to run a mission computation and obtain an instance of the mission result:

from pyAPP7 import Mission

misCmp = Mission.MissionComputation ()
misCmp.run (r'myMission.mis")
result = misCmp.getResult ()

This example assumes APP is installed in the default directory.
Variables
* output (str) — Path to the text file with the mission results written by APP

* result (MissionResult) — The result of the mission computation, parsed from
the ‘output’ text file

* misCompFile (Files.MissionComputationFile) — Instance of a Mission-
ComputationFile (APP .mis file). Is available once the method run was called

* db (Database) — Instance of a Database object
e inputfile (str) - Path to the APP mis file
A result from an APP command line computation can also be directly read by using the MissionResult class.

class pyAPP7.Mission.MissionResult
This class can read the APP mission result text file.

Examples

This example shows how to read a mission result directly from a text file. This is useful to read results from
past mission computations, for example when conduction batch simulations:

from pyAPP7 import Mission

res = Mission.MissionResult.fromFile (r'myMission.mis_ouput.txt")

Variables

* output (dict) - Dictionary containing the mission flags, error text, number- and list
of variables

12

* segments (list[MissionResultSegment J)— A list of MissionResultSegment
class instances, holding the results of each segment

* initialSettings (MissionResultSegment ()) — The initial settings of the
mission

6.5 Performance Charts
The Performance module, specifically the class PerformanceChart, is used to run the APP command line mode
for performance chart computations and parse the result text file.

class pyAPP7.Performance.PerformanceChart (APP7Directory='C:\\Program Files
(x86\\ALR Aerospace\APP 7 Profes-

 sional Edition’)
Helper class to execute a performance chart computation from an existing .perf file.

Variables
* inputfile (str)— Path to the input .perf file
* perfFile (PerformanceChartFile)— Parsed input APP7 .perf file
* output (str) — Path to the resulting txt file
e result (PerformanceChartResult)— Result
* APP7Path (str) — Full path to the APP7 executable

Parameters APP7Directory (str, optional) — Path to the location of the APP7 exe-
cutable.

Raises ValueError - If the APP7 executable is not found in the specified directory

A result from an APP command line computation can also be directly read by using the PerformanceChartResult
class.

class pyAPP7.Performance.PerformanceChartResult
Reads a result txt file written by the APP7 command line mode for a performance chart.

Examples

This example shows how to read a performance chart result directly from a text file. This is useful to read
results from past computations, for example when conduction batch computations:

from pyAPP7 import Performance

res = Performance.PerformanceChartResult.fromFile (r'myChart.perf ouput.txt')

Variables
* output (dict) — stores the result meta-data

* lines (List [ResultLine]) - holds the data of each line of a performanc chart

13

7 pyAPP7 Examples

Content: These examples are grouped into three main sections:
e Files
* Mission Computation
* Performance Charts

Version: pyAPP7 version 1.0

Note: This example was written as a jupyter notebook (version 4.4.0), and has been tested with Python 2.7.16
[Anaconda (64-bit). The notebook file is available in the Examples directory of the pyAPP7 distribution.

7.1 Imports & Constants

Imports for plotting (matplotlib) and arrays (numpy):

: import matplotlib.pyplot as plt

import numpy as np

Jupyter Notebook specific imports:

: Smatplotlib inline

Constants:

: APP7DIR = r'C:\Program Files (x86)\ALR Aerospace\APP 7 Professional Edition'

7.2 Files

The Files module is used to open, change and save APP Files. It can be used for: * acft (Aircraft) * mis (Mission
Computation) * perf (Performance Charts)

file types.

It is recommended to create a new file using the APP GUI and subsequenty modify this file using Python/py APP7,
instead of creating a file from scratch with pyAPP7.

Import the pyAPP7 modules

: from pyAPP7 import Files

from pyAPP7 import Database
from pyAPP7 import Units

The Units and Database modules are imported as well for this example. They are useful to convert units and
translate APP indices to human-readable text

Aircraft File (*.acft)

To load an APP aircraft model, the class AircraftModel is used. A new instance can be created directly with the
JfromFile class method:

: aircraftpath = r'data\\LWF.acft'

acft = Files.AircraftModel.fromFile (aircraftpath)
Now we have the aircraft file available in the acft variable. All data within the aircraft can be accessed through

class member variables directly, or by using get functions. This examples shows how to access fields in the
General Data tab of APP’s aircraft model GUI:

14

data = acft.getGeneralData ()
print ('Aircraft Name:', data.m_sAircraftName)
print ('Author:', data.m_sAuthor)

("Aircraft Name:', 'LWEF')
('"Author:', 'ALR'")

Getter functions exist for all the main datasets. To print lists of the available data sets, use:

: print (acft.getMassLimitsNames ())

(
print (acft.getAeroNames ())

print (acft.getPropulsionNames ())
print (acft.getStoreNames ())

['Standard']

['Cruise', 'TO Flaps 27\xb0']
['LWE ']

["AIM-9 Wingtip']

This example demonstrates how to loop through an X2Table (in this case the CL/CDi table) and correctly lable
the drag polars:

i =0
aero = acft.getBAero(i) #get the first aerodanymic dataset, in this case 'Cruise'

fig = plt.figure(figsize=(8.3, 5.8)) #A5 landscape figure, size is in inches
ax = plt.subplot(l,1,1)

for val, table in zip(aero.cdITable.value,aero.cdITable.table):
ax.plot (table[:,1], table[:,0], 'd-', label='Mach = '+str(val))

adjust Axis properties
ax.set_title(acft.getAeroName (i))
ax.legend(loc='best'")
ax.set_xlabel ('SCD_1iS")
ax.set_ylabel ('SCLS")

ax.grid()
Cruise
124
10+
0.8 4
0.6 4
d
04
—4— Mach =00
4— Mach =04
0.2 —4— Mach =07
—4— Mach = 095
0.0 - —4— Mach=10
' —4— Mach =1.2
4 Mach =14
-0.2 4 ~#— Mach =16
0.0 01 02 03 04 05

For an detailed explaination of the XTables classes, consult the pyAPP user guide.

A more involved example would be to compare lift curves of all available aero datasets:

15

[10]:

fig = plt.figure(figsize=(8.3, 5.8)) #A5 landscape figure, size is in inches
ax = plt.subplot (1, 1, 1)
for aero, aeroName in zip(acft.getAerolist (), acft.getAeroNames()):

ax.plot (aero.clTable.table[0][:,0]*Units.DEG, aero.clTable.table[0][:,1],
—label=aeroName.decode ('cpl252"))

ax.set_xlabel (u'SAoAS [°]")

ax.set_ylabel (u'SCLS")

leg = ax.legend(loc=2)
#fig.savefig('CL_comparison.png',dpi=200)

—— Cruise

a
10 TO Flaps 27

25

20

15

10

05

0.0

0 10 0 ED) 40
AcA [°]
Additionally, this example demonstrates the use of the Units module to convert from radians to degrees.

Note: In oder for the legend label for the 7O Flaps 27° setting to be printed correctly, the aeroName string has to
be converted to unicode with the enconding of the original text file, in this case cp/252. In addition, to print the °
sign in the x-axis label, the string has to be unicode and is typed with the prefix ‘v’

Mission File (*.mis)

The mission file is loaded using the classmethod fromFile in the MissionComputationFile class:

missionpath = r'data\\LWF Air Combat Mission RoA.mis'
missionFile = Files.MissionComputationFile.fromFile (missionpath)

We have now the mission file as a python variable missionFile in the memory ready to be be examined and
changed.

For example, getlnitialCondition() can be used to access the initial conditions. The return value is of type
Files.FlightData

initFd = missionFile.getInitialCondition ()
print (initFd.alt.xx) #altitude in meters
print (initFd.fuel.xx) #initial fuel as a factor [0...1]

0.0
1.0

To loop through the segments, use getSegmentList() to access the list of segments. The following code prints the
segment index (identifier) of each segment:

16

for segment in missionFile.getSegmentList () :
print (segment . segmentIndex)

SEG_GROUNDOP
SEG_TAKEOFF
SEG_CLIMB
SEG_BESTCLIMBRATE
SEG_ACCELERATION
SEG_TARGETMACHCRUISE
SEG_MANEUVRE
SEG_STOREDROP
SEG_MANEUVRE
SEG_STOREDROP
SEG_LOITER
SEG_SPECIFICRANGE
SEG_DECELERATION
SEG_CASDESCENT
SEG_LANDINGROLL

In order to display the label of each segment instead of the index string, we can use the Database class:

db = Database.Database ()

for segment in missionFile.getSegmentList () :
print (db.GetTextFromID (segment .segmentIndex))

Ground Operation
Takeoff

Climb

Climb at Best Rate
Acceleration

Cruise at Mach
Maneuver at Max. LF
Store Drop

Maneuver at Max. LF
Store Drop

Loiter

Cruise at Best SR
Deceleration
Descent at CAS
Landing Roll

Similarly, the type and value of the segment end condition can shown:

for segment in missionFile.getSegmentList () :

print (db.GetTextFromID (segment .endValuel.realldx), ':', segment.endValuel.xx,)
('Seg. Time', ':', 600.0)
('Velocity', ':', 75.4455900943)
("Altitude', ':', 500.0)
("Altitude' ':', 9500.0)
('Mach' ':‘, 0.9)
('Se Dist.', ':', 320053.202172)
('Turns‘, ':', 12.5663706144)
('Se Time', ':', 100.0)
('Turns' ':', 6.28318530718)
('S Dist.', ':', 100.0)
('Se Time', ':', 600.0)
('Se Dist.', ':', 402135.694779)
('CAS' ':', 102.888888976)
("Altitude' ':', 500.0)
('Velocity' ':', 0.01)

In the following code examples we show how to make changes to the mission and save it to a new file.

17

[16]:

[17]:

[18]:

[23]:

[24]:

The frist example shows how to change the initial fuel mass to 80% and the initial altitude to 1000 m:

initFd missionFile.getInitialCondition ()
initFd.fuel.xx = 0.8
initFd.alt.xx = 1000.0

Next, we change parameters of a segment, in this example the altitude (stop condition) of the segment “Climb at
Best Rate” (segment index 3) from 9500m to 7000m:

print (missionFile.getSegment (3) .endValuel.xx)
missionFile.getSegment (3) .endValuel.xx = 7000.0
print (missionFile.getSegment (3) .endValuel.xx)

9500.0
7000.0

In addition, we change the altitude of the initial climb after takeoff (Segment index 2) to 500m above the starting
altitude.

print (missionFile.getSegment (2) .endValuel.xx)
missionFile.getSegment (2) .endValuel.xx = initFd.alt.xx + 500.0
print (missionFile.getSegment (2) .endValuel.xx)

500.0
1500.0

Finally, we save the changed mission to a new file.

: missionpath_mod = r'data\\LWF Air Combat Mission RoA_mod.mis'

missionFile.saveToFile (missionpath_mod, overwrite=True)

Performance Chart File (*.perf)

A PerformanceChartFile is instantiated via the fromFile classmethod:

chartpath = r'data\\LWF Climb Rate Chart 50 uel.perf’
chart = Files.PerformanceChartFile.fromFile (chartpath)

This example shows how to change the flight state (initial condition). The function getlnitialCondition returns an
instance of type FlightData:

fd = chart.getInitialCondition ()

: print fd.alt.xx

print fd.speed.xx, db.GetTextFromID (fd.speed.realldx) #Mach Number
print fd.fuel.xx, db.GetTextFromID (fd.fuel.realldx)

0.0
0.0 Mach
0.5 Fuel Percent

Note: the speed variable can be either Mach or TAS. Check the corresponding realldx string. Similarly, the
variables payload, climb, thrust and pull can be of different type

Change the fuel from the current state (50%) to 100%

print (fd. fuel.xx)

0.5

fd.fuel.xx = 1.0

18

[26] :

[27]:

[29]:

To change the aircraft Configuration, for example from Dry (configuration index 0) to Reheat (configuration
index 1), access the ProjectAircraftSetting class. To see what configurations are available, open the aircraft model.

configNames = acft.getConfigurationNames ()
print 'Configurations in the aircraft model:\n', configNames, '\n'

cfg = chart.getAircraftConfiguration ()

print cfg.activeSetting, configNames[cfg.activeSetting]
cfg.activeSetting = 1

print cfg.activeSetting, configNames[cfg.activeSetting]

Configurations in the aircraft model:
['Cruise, Dry', 'Cruise, Reheat', 'TOL, Reheat', 'TOL, Dry']

0 Cruise, Dry
1 Cruise, Reheat

Similarly, External Store Configurations can be changed:

storeConfigNames = acft.getStoreConfigurationNames ()
print 'Store configurations in the aircraft model:\n',6 storeConfigNames, '\n'

cfg = chart.getAircraftConfiguration ()
print cfg.activeStoreSetting, storeConfigNames[cfg.activeStoreSetting]
cfg.activeStoreSetting = -1 #use -1 for no external stores (clean)

Store configurations in the aircraft model:
['"Air-to—-Air']

0 Air-to-Air

To access the computation, use the gerComputation method. The type of performance chart can be checked with
the CompType variable. In the case of a Point Performance Computation, the type of equation solved is stored
in resData.CmpType.

comp = chart.getComputation ()
print db.GetTextFromID (comp.CompType)
print db.GetTextFromID (comp.resData.CmpType)

Point Performance Computation

Climb

The resData attribute also holds the data ranges for the chart in two X0Tables, one for the X-Range the other for
the Parameter:

: print comp.resData.X1lRange.X0Typ

print comp.resData.X1lRange.table

print comp.resData.X2Range.X0Typ
print comp.resData.X2Range.table

REAL_MACH

[0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0.8 0.85 0.9 0.95]

REAL_ALT

[0. 2500. 5000. 7500. 10000.]

For example, to change the computed altitudes, replace the fable with a new numpy array:

comp.resData.X2Range.table = np.linspace (0.0, 10000.0, 3)
print comp.resData.X2Range.table

[0. 5000. 10000.]

or, add values manually (as floats):

19

[32]:

[37]:

comp.resData.X2Range.table = np.array([0.0, 10000.07)
print comp.resData.X2Range.table

[0. 10000.]

Save your modified file:

chartpath_mod = r'data\\LWF Climb Rate Chart 100 uel.perf’
chart.saveToFile (chartpath_mod, overwrite=True)

7.3 Mission Computation

Import the Mission module from pyAPP7:

from pyAPP7 import Mission

In order to run APP mission computations, create an instance of the MissionComputation class. The path to the
directory where the APP executable can be found has to be provided

: misCmp = Mission.MissionComputation (APP7Directory = APP7DIR)

: misCmp.run (missionpath)

True

res = misCmp.result

Access data by looping through the segments. To get a specific variable, find the index of the variable by using
the function getVariableIndex. To access the data of the segment, use getData. getData returns a 2D numpy array,
with the first dimension being the datapoint and the second dimension the variable. For example, the variable Fuel
Mass at the end of each segment can be obtained by using:

idx_fuel = res.getVariableIndex ('Fuel Mass')

for seg in res.getSegmentList () :

print res.getVariableName (idx_fuel), ':',seg.getData () [-1,idx_fuel]

Fuel Mass [kg] 1896.218

Fuel Mass [kg] 1859.49218997
Fuel Mass [kg] 1779.27456082
Fuel Mass [kg] 1532.93143492
Fuel Mass [kg] 1520.88752268
Fuel Mass [kg] 1123.86312629
Fuel Mass [kg] 914.583951541
Fuel Mass [kg] 914.583951541
Fuel Mass [kg] 815.505620848
Fuel Mass [kg] 815.505620848
Fuel Mass [kg] 619.613596679
Fuel Mass [kg] 225.152121272
Fuel Mass [kg] 222.695756009
Fuel Mass [kg] 104.648393277
Fuel Mass [kg] 100.120415794

Instead of using getData to access the raw output, we can call getVariableData and get a list of numpy arrays for
the output of a specific variable:

var_name, mission_data = res.getVariableData ('Fuel Mass')

print var_name

print len(mission_data)

print mission_datal[0] #time-dependent data of the first segment

20

[38]:

[39]:

Fuel Mass

15

[2000.

1989.
1979.
1968.
1958.
1948.
1937.
1927.
1916.
1906.
1896.

[kg]

1998.2703
6218 1987.8921
2436 1977.5139
8654 1967.1357
4872 1956.7575
109 1946.3793
7308 1936.0011
3526 1925.6229
9744 1915.2447
5962 1904.8665
218 1896.218]

1996.
1986.
1975.
1965.
1955.
1944.
1934.
1923.
1913.
1903.

5406
1624
7842
406

0278
6496
2714
8932
515

1368

1994.
1984.
1974.
1963.
1953.
1942.
1932.
1922.
1911.
1901.

8109
4327
0545
6763
2981
9199
5417
1635
7853
4071

1993.
1982.
1972.
1961.
1951.
1941.
1930.
1920.
1910.
1899.

0812
703

3248
9466
5684
1902
812

4338
0556
6774

1991.
1980.
1970.
1960.
1949.
1939.
1929.
1918.
1908.
1897.

3515
9733
5951
2169
8387
4605
0823
7041
3259
9477

A list of the fuel consumed per segment can be easily ontained using a list comprehension:

idx_se

segFue

[103.7

<+397.02439638800001,
—46147540700002,

fig =

gFuel

1List

res.getVariableIndex ('Seg.

Fuel')

[seg.getData () [-1,1dx_segFuel]
print segFuellist

82, 36.7258100321,

plt.figure(figsize=(8.3, 5.8))

ax = plt.subplot(l,1,1)
ax.bar (range (len(segFuellist)),
segFuellist,

align='center',
color="#336699")
ax.set_xticks (range (len (segFuellist)))
ax.set_xticklabels (res.getSegmentNameList (),
ax.set_ylabel (res.getVariableName (idx_segFuel))

Text (0,0.5, 'Seg. Fuel

Seq. Fuel [kg]

80.2176291448,

[kgl")

209.279174746, 0.0
2.4563652631499999,

246.34312590799999,

for seg in res.getSegmentList ()]

, 99.0783306923,

118.047362732,

rotation=45,

#A5 landscape figure,

0.0,

ha="

400 A

350

™ 2 i) ™) o o h iy} N)
T FF PN FT
. & o) .) = i . A , n
) LA 2 & LA WE 3 &
U . S . as & & §$ o
FFFEFFFS e E e
S EETFEFF T Faf @&
F S TN IS e
F o F T P g & F
A AR R LA
o o Vo & o &f <§¥
< & R e ¢
&

sf‘“

195.892024169,

4.5279774831899999]

size is in inches

right')

12.043912239799999,

394.

[407]:

[42]:

Looping through the segments can also be useful to plot the mission profile:

idxl = res.getVariableIndex('Time")
idx2 = res.getVariableIndex('Distance')
idx3 = res.getVariableIndex ('Altitude’")

fig = plt.figure(figsize=(8.3, 5.8)) #A5 landscape figure, size is in inches

ax = plt.subplot(2,1,1)
for seg in res.getSegmentList () :
ax.plot (seg.getData () [:,1dx1l], seg.getData () [:,1dx3])

ax.set_xlabel (res.getVariableName (idx1))
ax.set_ylabel (res.getVariableName (idx3))

ax = plt.subplot(2,1,2)
for seg in res.getSegmentList () :
ax.plot (seg.getData () [:,1dx2],seg.getData() [:, 1dx3])

ax.set_xlabel (res.getVariableName (idx2))
ax.set_ylabel (res.getVariableName (idx3))

plt.tight_layout ()

10000

8000 4

G000 4

4000

Altitude [m]

2000 1

0

T T T
1000 2000 3000 4000 5000
Time [sec]

=

10000

8000 1

G000 1

4000 A

Altitude [m]

2000

200 400 500 B00
Distance [km]

=

Matplotlib offers a lot of formatting options for legends: http://matplotlib.org/api/legend_api.html#matplotlib.
legend.Legend

idxl = res.getVariableIndex('Distance')
idx2 = res.getVariableIndex ('Altitude')
idx_segDst = res.getVariableIndex('Seg. Dist')

fig = plt.figure(figsize=(8.3, 5.8)) #A5 landscape figure, size is in inches
ax = plt.subplot(l,1,1)

colormap = plt.cm.rainbow
ax.set_prop_cycle('color', [colormap (i) for i in np.linspace(0, 0.9, 7)1)

for i,seg in enumerate (res.getSegmentList ()) :

if seg.getData () [-1,idx_segDst]>2.0:

(continues on next page)

22

http://matplotlib.org/api/legend_api.html#matplotlib.legend.Legend
http://matplotlib.org/api/legend_api.html#matplotlib.legend.Legend

[45] :

(continued from previous page)

ax.plot (seg.getData() [:,1idx1l], seg.getData() [:,idx2], label=seg.getName(),
—1lw=2.0)

ax.set_xlabel (res.getVariableName (idx1))

ax.set_ylabel (res.getVariableName (idx2))

plt.subplots_adjust (bottom=0.2)

ax.legend (bbox_to_anchor=(1.05,-0.1), ncol=3, fontsize = 9, handlelength = 2.0)
ax.grid()

BOOD A
__ B000 A
E
w
=]
2
E] 4000 A
2000 A
D 4
T T T T T
o 200 400 G00 BOO
Distance [km]
= Climb {Cruise, Reheat) Cruise at Mach (Cruise, Dry) Deceleration (Cruise, Dry)
= Climb at Best Rate {Cruise. Dry) Cruise at Best SR (Cruise, Dry) = Descent at CAS (Cruise, Dry)

= Acceleration {Cruize, Dry)

: misCmp_mod = Mission.MissionComputation (APP7Directory = APP7DIR)

misCmp_mod.run (missionpath_mod)

True

res_mod = misCmp_mod.result
idx_segDst = res.getVariablelIndex('Seg. Dist")

fig = plt.figure(figsize=(8.3, 5.8)) #A5 landscape figure, size is in inches
ax = plt.subplot(l,1,1)

colormap = plt.cm.rainbow
ax.set_prop_cycle('color', [colormap (i) for i in np.linspace (0, 0.9, 7)1)

for i,seg in enumerate (res.getSegmentList()):
if seg.getData () [-1,1dx_segDst]>2.0:
ax.plot (seg.getData() [:,1dx1l], seg.getData() [:,1idx2], label=seg.getName (),
—1w=2.0)

for i,seg in enumerate (res_mod.getSegmentList ()) :
if seg.getData() [-1,idx_segDst]>2.0:
ax.plot (seg.getData () [:,1dx1], seg.getData() [:,1idx2],1lw=2.0)

ax.set_xlabel (res.getVariableName (idx1))

ax.set_ylabel (res.getVariableName (idx2))

plt.subplots_adjust (bottom=0.2)

ax.legend (bbox_to_anchor=(1.05,-0.1), ncol=3, fontsize = 9, handlelength = 2.0)
ax.grid()

23

[48]:

[48]:

[49] :

8000 A
__ 000 A
E
[
=
=
ﬁ 4000 4
2000
D B
T T T T T
] 200 400 &00 800
Distance [km]
= Climb ({Cruise, Reheat) Cruise at Mach (Cruise, Dry) Deceleration (Cruise, Dyl
= Climb at Best Rate {Cruize. Dry) Cruise at Best SR (Cruise, Dry) —— Descent at CAS (Cruise, Dry)

= Acceleration (Cruise, Dry)

The result of a mission computation can also be loaded from the result text-file after the computation:

resfile = r'data\\LWF Air Combat Mission RoA.mis_output.txt'
res = Mission.MissionResult.fromFile (resfile)

Complex Mission Loop

cap_path = r'data\\LWF CAP Loop.mis'
cap_path_mod = r'data\\LWF CAP Loop_mod.mis'

mis = Files.MissionComputationFile.fromFile (cap_path)
[(i, seg.getName()) for i, seg in enumerate (mis.getSegmentList ())]

[(0, 'SEG_GROUNDOP'),

(1, 'SEG_TAKEOFF'),

(2, 'SEG_CLIMB'),

(3, '"SEG_BESTCLIMBRATE'),
(4, '"SEG_ACCELERATION'),
(5, 'SEG_TARGETMACHCRUISE'),
(6, '"SEG_LOITER'),

(7, '"SEG_STOREDROP'),

(8, 'SEG_STOREDROP'),

(9, 'SEG_MANEUVRE'),

(10, 'SEG_SPECIFICRANGE'),
(11, 'SEG_NOCREDIT')]

idx_loiter = 6
idx_combat = 9
range_combat = np.linspace(0, 10, 6) # minutes

Read a CAP mission from an existing file, adjust the end-value of the combat segment and save the mission to
another file. Afterwards, run the mission, extract the result and store it to a list (i.e. loiter_time).

loiter_time = []
for i in range_combat:
misFile = Files.MissionComputationFile.fromFile (cap_path)

24

(continues on next page)

(continued from previous page)

combat = misFile.getSegment (idx_combat)
combat .endValuel.xx = ix60.0 # convert minutes to seconds
misFile.saveToFile (cap_path_mod, overwrite=True)

mis = Mission.MissionComputation (APP7DIR)
mis.run (cap_path_mod)

res = mis.getResult ()

idx_segTime = res.getVariableIndex('Seg. Time')
loiter_time.append(res.getSegment (idx_loiter) .getData () [-1,idx_segTime])

Plot the results as a bar-chart.

fig = plt.figure(figsize=(8.3, 5.8)) #A5 landscape figure, size is in inches

ax = plt.subplot(l,1,1)

width = 1.4

ax.bar (x=range_combat-2.0xwidth,
height=loiter_time, width=width,
tick_label=[str(c) for c in range_combat],
align='center',
color="#336699")

ax.set_title('Combat Air Patrol (CAP)')

ax.set_xlabel ('Combat Time [min]")

ax.set_ylabel ('Time on Station [min]')

Text (0,0.5, '"Time on Station [min]"')

Combat Air Patrol (CAP)

&

Time on Station [min]
2

20

40 6.0
Combat Time [min]

Note: input data is always in SI units (e.g. the combat time segment endValue is in seconds), but the output values
are formatted (e.g. loiter time is in minutes)

25

[53]:

[54]:

[56]:

7.4 Performance Charts

Import the Performance module from py APP7

from pyAPP7 import Performance

perf = Performance.PerformanceChart (APP7Directory=APP7DIR)
perf.run(chartpath)

True

The result is loaded into a PerformanceChartResult instance:

res

perf.result

A PerformanceChartResult contains a list of ResultLine objects. The ResultLine contains the data as a 2d numpy
array, with the first dimension being the datapoints and the second dimension the variable index:

line = res.getLine (0)
data = line.getData()
print data.shape
print data

(16L, 88L)

[l 0. 0. 0. ceey 64.27329108
64.93182676 20.39259343]

[0. 0. 0. ceey 64.27329108 79.2340213
30.97531047]

[0. 0. 0. ceey 64.27329108

94.60491582 38.3654778]

[0. 0. 0. ey 68.52726956

288.03991245 26.42931541]

[0. 0. 0. ceey 68.23628197
306.24737031 3.24777545]

[0. 0. -0. ey 69.04558153

315.66211611 -69.76337364]]

To find the index of the desired variable, use the getVariableIndex function:

idx1l = res.getVariableIndex ('CAS")
idx2 = res.getVariableIndex('Climb Speed')

The lines can then be plotted using Matploltib:

fig = plt.figure(figsize=(8.3, 5.8)) #A5 landscape figure, size is in inches
ax = plt.subplot(1,1,1)

#Plot the lines
for line in res.getLinelist () :
ax.plot (line.getData () [:,1idx1],line.getData () [:,1dx2], label=line.getLabel())

ax.legend (loc=3)
ax.set_xlabel (res.getVariableName (idx1))
ax.set_ylabel (res.getVariableName (idx2))

Text (0,0.5, 'Climb Speed [m/sec]"')

26

m J
_q[] 4
20
F)
')
E ol
=]
L
L
[=8
u
L _ -
£ 20
[w]
—40 4 -
— Altitude 0 [m]
Altitude 2500 [m]
0l T Altitude 5000 [m]
— Altitude 7500 [m]
= Altitude 10000 [m]

50 100 150 200 50 300
CAS [misec]

Since each data line is a numpy array, data can easily be processed using the powerful functions of numpy. This
example extracts the maxima of each line and plots them. Note: the line contains NaNs, therefore the function
np.nanargmax is used to extract the maxima.

fig = plt.figure(figsize=(8.3, 5.8)) #A5 landscape figure, size is in inches
ax = plt.subplot(1,1,1)

#Plot the lines
for line in res.getLinelist () :
ax.plot (line.getData() [:,1dx1], line.getData() [:,idx2], label=line.getLabel ())

ax.set_prop_cycle (None) #Resets the color cycle

#Plot the maxima
for line in res.getLinelist () :
xdata = line.getData() [:,1idx1]
ydata = line.getData() [:, 1idx2]
idx_max = np.nanargmax (ydata) #find the location of the maximum
ax.plot (xdata[idx_max], ydatal[idx_max], 'd', label=str(ydatal[idx_max]))

ax.legend(loc=3, numpoints=1, ncol=2)
ax.set_xlabel (res.getVariableName (idx1))
ax.set_ylabel (res.getVariableName (idx2))

Text (0,0.5, 'Climb Speed [m/sec]')

27

Climnb Speed [m/fsec]

e ———
40 4
20
ﬂ_
_20 o
—40
—— Altitude 0 [m] 4 552720657975
Altitude 2500 [m] 4 453771395625
60 | — Attitude 5000 [m] 4 37.1439957506
— Altitude 7500 [m] 4 30.8891906762
—— Altitude 10000 [m] ¢ 14.1710759186
T
50 100 150 200 50 300
CAS [misec]

28

8 Developer Interface

This part of the documentation details the classes and functions available within py APP7

8.1 AircraftModel
class pyAPP7.Files.AircraftModel
Holds the APP7 aircraft model that is used to read and write APP .acft files

Each type of data (Mass&Limits, Aerodynamcis, Propulsion, Stores) is stored in two lists: one list contain-
ing names and one list containing data. These two lists have to have the same length. The configurations
are built by using these list indices. Take proper care when manipulating these lists manually and update
the ‘ProjectAircraft’ (m_Prj).

Examples

The best way to create an instance of an AircraftModel is to use the classmethod fromFile:

from pyAPP7 import Files

acft = Files.AircraftModel.fromFile (r'myAircraft.acft')

Variables
* m_GeneralData (GeneralData) — General data about the aircraft
¢ text (Text)— Content of the comment text box in ‘General Data’

* configName (1ist [str]) — list holding the names of the Mass&Limits datasets
(‘Config’ classes)

* aeroName (list[str]) — list holding the names of the Aerodynamics datasets
(‘Aero’ classes)

* propulsionName (Iist [str])—list holding the names of the Propulsion datasets
(‘PropulsionData’ child classes)

* storeName (list[str]) — list holding the names of the Store datasets (‘Store’
classes)

* m_config (list[Config])—listof the Mass&Limits datasets (‘Config’ classes)
* m_aero (list [Aero]) - list of the Aerodynamics datasets (‘Aero’ classes)

* m_propulsion (list[PropulsionData]) — list of the Propulsion datasets
(‘PropulsionData’ child classes)

e m_store (1ist[Store]) - list of the Store datasets (‘Store’ classes)

*m Prj (ProjectAircraft) — Contains the Configurations and Store Configura-
tions

classmethod fromFile (filename)
Creates a new AircraftModel instance from the path ‘filename’
Raises

* ValueError — If a parsing error occurs. The aircraft file seems to be corrupted
e IOError — If the file cannot be opened

load (f)
load an aircraft from a file handle f. Low level function, use fromFile or loadFromFile.

29

Raises ValueError - If a parsing error occurs. The aircraft file seems to be corrupted

loadFromFile (filename)
load an aircraft from a file path ‘filename’

Raises
* ValueError — If a parsing error occurs. The aircraft file seems to be corrupted
e IOError — If the file cannot be opened

saveToFile (filename, overwrite=False)
Write the APP .acft aircraft file.

Raises ValueError — If file exists but overwrite was set to False

class pyAPP7.Files.GeneralData
Class used in ‘AircraftModel’ to store general data.

Variables
e m_sAircraftName (str)— Name of the aircraft model (‘Model’ field in APP)
e m_sManufacturer (str) - Name of the manufacturer
* m_sVariant (str) - Name of a specific variant for this aircraft
* m_sYear (str)-— Year
e m_sAuthor (str)— Name of the author of the APP model
* m_sVersion (str)— Version description of the APP model
* m_sDate (str)— Date of the APP model. Format: DD/MM/YYYY (e.g. 24/03/2016)

class pyAPP7.Files.Config
Class used in ‘AircraftModel’, holds Mass&Limits data

Variables
* text (Text) — Description
* mass (Mass) — Class holding mass data
* battery (Battery) — Class holding battery data
* gear (Gear) — Class holding gear data

* tolParameter (TOLParameter)— Class holding parameters for take-off and land-
ing

* nEngines (NExtReal)— Number of engines

* thrustMult (NExtReal) — Thrust multiplier

* fuelFlowMult (NExtReal) — Fuel flow multiplier

* relAoA (NExtReal) — Thrust line angle

* dDragArea (NExtReal) — Delta drag area

* dragMult (NExtReal) — Drag multiplier

e posLimitLF (NExtReal) — Positive limit load factor

* negLimitLF (NExtReal) — Negative limit load factor

* limitAoAMax (NExtReal)— Maximum AoA Limit

e limitAoAMin (NExtReal)— Minimum AoA Limit

* limitMass (NExtReal)— Maximum Take-Off Mass limiter (optional)
* limitMachTable (X1Table)— Mach limiter table (altitide, Mach)

* limitAoAGTable (X1Table)— AoA-G limiter table (AoA, g)

30

class pyAPP7.Files.Mass
Class used in the ‘Config’ (Mass&Limits) class for the ‘AircraftModel’

This class holds the mass breakdown. A minimal dataset should have values for the structure, payload and
internalFuel entries.

Variables
e structure (NExtReal) — Structure mass
* propulsionGroup (NExtReal) — Propulsion group mass
* equipment (NExtReal)— Equipment mass
* massDeviations (NExtReal)— Mass deviation
* fixedOperatingEquipment (NExtReal)— Fixed op. equipment mass
* unusableFuelAndOil (NExtReal) — Unusable fuel and oil mass
* gun (NExtReal)— Gun mass

* removableOperatingEquipment (NExtReal) — Removable op. equipment
mass

* usableOil (NExtReal) — Usable oil mass

e crew (NExtReal) — Crew mass

* specMissionEquipment (NExtReal)— Spec. mission eugipment mass
* ammunition (NExtReal)— Ammunition mass

* payload (NExtReal)— Payload mass

e internalFuel (NExtReal) — Fuel mass (internal fuel)

class pyAPP7.Files.Battery
Class used in the ‘Config’ (Mass&Limits) class for the ‘AircraftModel’

This class holds the battery properties.
Variables
* batteryEnergy (NExtReal) — Energy storage capacity
* batterySpecificEnergy (NExtReal) — Specific energy
* nu_discharge (NExtReal) — Discharge efficiency
* nu_charge (NExtReal) — Charging efficiency

class pyAPP7.Files.Gear
Class used in the ‘Config’ (Mass&Limits) class for the ‘AircraftModel’

Variables
* cdGearArea (NExtReal) — Gear drag area
* aoaGround (NExtReal)— AoA on Ground
* isFixedGear (Boolean) — Fixed gear

class pyAPP7.Files.TOLParameter
Class used in the ‘Config’ (Mass&Limits) class for the ‘AircraftModel’

Variables
* tailstrikeAngle (NExtReal) — Tailsrike angle
* maxTireSpeed (NExtReal) — currently unused

class pyAPP7.Files.Aero
Class used in ‘AircraftModel’, holds aerodynamics data

31

Variables
* text (Text) — Description
* aspectRatio (NExtReal)— Aspect ratio
e Sref (NExtReal) — Reference area
* cdOTable (X2Table) — Table holding the zero lift drag CDO
* cdITable (X2Table) — Table holding the induced drag CDI
* clmaxTable (X1Table) — Table holding the maximum CL (CLmax)
* cl0Table (X1 Table)— Table holding the CI0 (DCL, i.e. CL for minimum drag)
* clTable (X2Table) — Table holding the lift curves (CL)

class pyAPP7.Files.PropulsionData
Base class for propulsion datasets. Use the class method ‘fromIndex’ to create child classes.

classmethod fromIndex (index)
Creates a PropulsionData child class using the propulsion type (index)

Parameters index (str) — The currently available types are ‘PROPULSION_JET’ and
‘PROPULSION_PROP’

class pyAPP7.Files.JetPropulsionData
Class used in ‘AircraftModel’, holds jet propulsion data

Variables
* m_manufacturer (str) - Manufacturer of the engine
* m_variant (str)— Variant of the engine

* nthrustData (int) — Number of thrust characteristics. Equals the length of the
thrustData list

* thrustData (list [JetThrust])— List containing the thrust characteristics (Jet-
Thrust)

* nfuelData (int)— Number of thrust characteristics. Equals the length of the thrust-
Data list

* fuelData (1ist [JetFuel]) - List containing the fuel flow data (JetFuel)
* m_index (str)— Type of the propulsion, PROPULSION_JET

class pyAPP7.Files.JetThrust
Class used in ‘JetPropulsionData’, holds jet thrust data

Variables
* name (str)— Name of the dataset
* text (Text) — Description
* maxThrustTable (X2Table) — Table holding the max. thrust data
* minThrustTable (X2Table) — Table holding the min. thrust data

¢ fuelFlowFileName (str)— Name of the fuel flow data associated with this thrust
dataset

class pyAPP7.Files.JetFuel
Class used in ‘JetPropulsionData’, holds jet fuel flow data

Variables
* name (str)— Name of the dataset

* text (Text) — Description

32

fuelTable (X3Table) — Table holding the fuel flow data

class pyAPP7.Files.PropPropulsionData
Class used in ‘AircraftModel’, holds propeller propulsion data

class pyAPP7.Files.PropThrust
Class used in ‘PropPropulsionData’, holds propeller and power data

class pyAPP7.Files.PropFuel
Class used in ‘PropPropulsionData’, holds fuel flow data

class pyAPP7.Files.Propeller
Class used in ‘PropThrust’, holds propeller data

class pyAPP7.Files.ElectricPropulsionData
Class used in ‘AircraftModel’, holds electric propeller propulsion data

class pyAPP7.Files.PropElectricThrust
Class used in ‘PropPropulsionData’, holds propeller and power data

class pyAPP7.Files.GenericElectricPropulsionData
Class used in ‘AircraftModel’, holds generic electric propulsion data

class pyAPP7.Files.GenericElectricThrust
Class used in ‘JetPropulsionData’, holds generic electric thrust data

The only difference to JetThrust is the class label.

class pyAPP7.Files.GenericElectricFuel
Class used in ‘JetPropulsionData’, holds generic electric fuel flow data

class pyAPP7.Files.RangeExtenderPropulsionData
Class used in ‘AircraftModel’, holds range extender propulsion data

class pyAPP7.Files.RangeExtenderThrust
Class used in ‘RangeExtenderPropulsionData’, holds range extender and power data

class pyAPP7.Files.Store
Class used in ‘AircraftModel’, holds store data

class pyAPP7.Files.ProjectAircraft
Class used in ‘AircraftModel’, holds the configurations and store configurations

Variables

storeConfigName (1ist [str])— List of the store configuration names
storeConfiglist (1ist [StoreDatalist])— List of the store configurations
text (Text) — Description. Currently unused

nrOfProjects (int)— Number of aircraft configurations
nrOfStoreSettings (int)— Number of store configurations

settingName (1ist [str])— List of the aircraft configuration names
configName (1ist [str])— List of the mass and limit dataset names

aeroName (1ist [str])— List of the acrodynamic dataset names
propulsionName (1ist [str])— List of the propulsion dataset names

thrustName (1ist [str]) - List of the thrust rating dataset names

checkSettings ()
Check the project for consistency

Raises AssertionError — If any of the lists do not have the same length as the project

class pyAPP7.Files.StoreDatalist
Holds a list of StoreData. Used in ProjectAircraft and ProjectAircraftSetting.

33

class pyAPP7.Files.StoreDatalist
Holds a list of StoreData. Used in ProjectAircraft and ProjectAircraftSetting.

class pyAPP7.Files.StoreData
Holds the state of a store. The correpsonding ‘Store’ data is identified by its name

Variables
* name (string) - Name of the ‘Store’ data

* autodrop (int)—setto 1 if the store should be dropped when empty, O otherwise (if
the store is a fuel tank)

* storestate (int)— Indicates if the store is dropped (1) or attached (0)

8.2 MissionComputationFile

class pyAPP7.Files.MissionComputationFile
Reads an APP .mis file

This class reads an APP mission computation file. Most of the data is stored in a ProjectAircraftSetting
object (aircraft configuration and stores) and a MissionDefinition object (initial conditions, list of segments).
When manipulating mission files, consult the source code and documentation of these two classes.

Note: Data for APP’s “Parameter Study” computation mode is read as well (into the variationData at-
tribute). However, APP’s command line mode does not support this computation type

Examples

The best way to create an instance of a MissionComputationFile is to use the classmethod fromFile:

from pyAPP7 import Files

mis = Files.MissionComputationFile.fromFile (r'myMission.mis'")

Variables
* text (Text)— Description text
* name (str)—name of the mission computation
e author (str) - name of the author of the mission file

* aircraftpath (str) — path to the aircraft, either relative (to the location of the mis
file) or absolute

* projectAircraftSetting (ProjectAircraftSetting) — holds the used
configuration of the aircraft and settings of stores

* misDef (MissionDefinition)— Holds the initial conditions and the list of seg-
ments

* resData (ResArrayData) — Holds the computation type (CMP_MISSION or
CMP_MISSIONVAR)

* variationData (VariationData)— Holds data for the Parameter Study mission
computation type
checkAircraftPath ()
Check if the aircraft file specified in aircraftpath exists

classmethod fromFile (filename)
Creates a new MissionComputationFile instance from the path ‘filename’

34

Raises IOError — If the file cannot be opened

getAbsoluteAircraftPath (misFilePath)
If the aircraftpath is relative, this function returns the absolute path with respect to misFilePath

getOptimizerSettings ()
kept for backwards compatability

load (f)
Loads a mis file using an existing open file handle f. To read from a file path, use the fuction load-
FromFile or the classmethod fromFile

class pyAPP7.Files.MissionDefinition
Class is used in ‘MissionComputationFile’. Holds the initial conditions and the list of segments.

Variables
* initialFd (FlightData) — Initial conditions of the mission
* segments (list [MissionSegment])— List of segments
* opt (MisOptData) — Solver settings

class pyAPP7.Files.MissionSegment
Used in the class ‘MissionDefinition’, holds all data that describes a segment

Variables

* segmentIndex (str) — type of the segment, e.g. ‘SEG_TAKEOFF’ or
‘SEG_CLIMB?’. Refer to the documentation for valid strings

* versionString (list [str]) - class name and version, set by APP7
* segFd (FlightData) — parameters of the segment. Not all segments use all data.
* Timestep (NExtReal) — timestep of the segment, in seconds

* endValuel, endValue2 (NExtReal)— Segment stop conditions. See documenta-
tion for valid NExtReal.realldx strings

* comparatorTypel, comparatorType2 (int) — Comparator for each segment
stop condition. less=0, greater=1

* increaseX, increaseY, increaseZ (int) — flags for x,y and z integration (the
z value is currently unused)

specialValuel, specialValue2 (NExtReal)— some segments use additional
data. Refer to the documentation

* specialInteger (int) — some segments use additional data. Refer to the docu-
mentation

class pyAPP7.Files.MisOptData
Holds mission solver data, used in ‘MissionDefinition’.

class pyAPP7.Files.ProjectAircraftSetting
Saves the index of the active configuration and store configuration and holds the initial state of the stores
within the selected store configuration

Used in ‘PerformanceChartFile’ and ‘MissionComputationFile’

class pyAPP7.Files.VariationData
Holds mission variation data, used in ‘MissionComputationFile’.

35

8.3 PerformanceChartFile

class pyAPP7.Files.PerformanceChartFile
Reads an APP .perf file

This class reads an APP performance chart file. Most of the data is stored in a ProjectAircraftSetting
object (aircraft, configuration and stores), a FlightData object (initial conditions and flight state) and a
PointPerfSolver child class object (specific data, related to the type of performance chart).

Note: Not all types of point performance charts can be computed by the APP command line mode. See
documentation for valid types.

Examples

The best way to create an instance of a PerformanceChartFile is to use the classmethod fromFile:

from pyAPP7 import Files

chart = Files.PerformanceChartFile.fromFile (r'myPerfFile.perf')

Variables
* text (Text)— Description text
* name (str)—name of the mission computation
* author (str) - name of the author of the mission file

* aircraftpath (str)— path to the aircraft, either relative (to the location of the perf
file) or absolute

* projectAircraftSetting (ProjectAircraftSetting) — holds the used
configuration of the aircraft and settings of stores

* flightData (FlightData) — holds the flight state (initial conditions)
* perf (PointPerfSolver) — instance of a child class of PointPerfSolver, defines
the type of performance chart
classmethod fromFile (filename)
Creates a new PerformanceChartFile instance from the path ‘filename’
Raises IOError — If the file cannot be opened

getAbsoluteAircraftPath (perfFilePath)
If the aircraftpath is relative, this function returns the absolute path with respect to the misFilePath

class pyAPP7.Files.PointPerfSolver
Base class for a performance chart (PerformanceChartFile) type. Do not use directly, use the class ‘Point-
PerfHelper’ to generate child classes.

class pyAPP7.Files.PointSolveParaStudy
‘Point Performance Computation’ performance chart type, used in ‘PerformanceChartFile’

class pyAPP7.Files.PointSolveLFEnvelope
‘G-Envelope’ performance chart type, used in ‘PerformanceChartFile’

class pyAPP7.Files.PointSolveSEPEnvelope
‘SEP-Envelope’ performance chart type, used in ‘PerformanceChartFile’

class pyAPP7.Files.PointSolveAccelEnvelope
‘SEP-Envelope (Accel)’ performance chart type, used in ‘PerformanceChartFile’

36

class pyAPP7.Files.PointSolveSEPTurnRate
‘Turn-Rate Chart (SEP)’ performance chart type, used in ‘PerformanceChartFile’

class pyAPP7.Files.PointSolveAccelTurnRate
‘Turn-Rate Chart (SEP)’ performance chart type, used in ‘PerformanceChartFile’

class pyAPP7.Files.PointSolveAltTurnRate
‘Turn-Rate Chart (Altitude)’ performance chart type, used in ‘PerformanceChartFile’

class pyAPP7.Files.PointSolveAltSEP
‘SEP Chart (Altitude)’ performance chart type, used in ‘PerformanceChartFile’

class pyAPP7.Files.PointSolveThrustDrag
‘Thrust and Drag’ performance chart type, used in ‘PerformanceChartFile’

8.4 Common Classes
class pyAPP7.Files.FlightData
Holds all data that defines a flight state.

class pyAPP7.Files.ResArrayData
Holds data for ranges used in performance charts (‘PointPerfSolver’)

class pyAPP7.Files.Text
Multi-line text, used in ‘Description’ fields of APP

Variables text (1ist [str]) - lines of the text. An empty line is written with a single ‘%’
character

Example

>>> comment=Text ()

>>> comment.text=['This is a multi-line comment.','%', 'This is another line']
>>> comment .writeASCII (sys.stdout)

[OBJECT VERSION]

CText 1

[USER TEXT]

3

This is a multi-line comment.

o

°

This is another line

8.5 Supporting Classes

class pyAPP7.Files.PointPerfHelper
Factory class to generate ‘PointPerfSolver’ child classes corresponding to a specified performance chart

type.
Valid chart types are:

¢ CMP_POINT_PERF

* CMP_G_ENVELOPE

¢ CMP_SEP_ENVELOPE

e CMP_SEP_ENVELOPE_ACCEL
CMP_TURNRATE_SEP_CHART
CMP_TURNRATE_ACCEL_CHART
CMP_TURNRATE_ALT_CHART

37

* CMP_THRUSTDRAG_CHART
* CMP_SEP_ALT_CHART

Variables ecmpType (string)—type of performance chart. See the class method ‘newSolver’
for a list of valid types.

classmethod fromType (cmpType)
Creates a new ‘PointPerfSolver’ instance with type cmpType.
Raises

* NotImplementedError — If the ‘cmpType’ has not yet been implemented into
pyAPP7

* ValueError — If the ‘cmpType’ is not a valid chart type.

newSolver (cmpType)
Returns a child class instance of base type ‘PointPerfSolver’ by using the attribure ‘cmpType’. cmp-
Type is set using SetType().

Raises

* NotImplementedError — If the ‘cmpType’ has not yet been implemented into
pyAPP7

* ValueError — If the ‘cmpType’ is not a valid chart type.

8.6 Data Types

class pyAPP7.Datatypes.NExtReal
APP datatype that wraps a float and allows to specify a label, type of variable (through an index string) and
indicate if the value is a limiter

Variables
* xx (float) - value of variable
* label (str) - label of the value, e.g. ‘[Mach]’
* realIdx (str)—index (type) of variable, e.g. ‘REAL_MACH’

* limitActive (int) — 0 or 1, depends on whether the variable has an active limit.
E.g used for Max. Take-Off Mass

Note: use readASCIILimited and write ASCIILimited if the variable is a limited value.

Examples

When using pyAPP7 to read APP files, usually no direct use of this type is needed. This information is
mostly for developers/maintainers. The text format of a simple, non-limited NExtReal looks like this:

[Mach]
REAL_MACH
0.985

This is parsed using readASCII with the flag full=True. The full flag has to be set to True to read the index
string ‘REAL_MACH’.

>>> val = NExtReal ()
>>> f = open('path to text file')
>>> val.readASCII (f, full=True)

38

resulting in the following attributes:

val.xx = 0.985

val.realldx = 'REAIL_MACH'
val.label = '[Mach]'
val.limitActive = 0

If the text format has no index string,

[Mach]
0.985

readASCII is called with with the flag full=False:

>>> val = NExtReal ()
>>> f = open('path to text file')
>>> val.readASCII (f)

class pyAPP7.Datatypes.Boolean

Wrapper to read/write an APP boolean

8.7 Tables

class pyAPP7.Datatypes.X0Table

Holds a 1D table (data range)

Variables

* data (1ist[str])— Table data with table factor and interpolation settings

* table (ndarray) — numpy array of shape (N,1)

* label (str)— Header string
* X0Typ (str)— APP variable type

class pyAPP7.Datatypes.X1lTable

Holds a 2D table

Variables

* data (1ist[str])— Table data with table factor and interpolation settings

* table (ndarray) — numpy array of shape (N,2)

* label (str)— Header string

class pyAPP7.Datatypes.X2Table (embedded=False)

Holds a list of 2D tables

Variables

* data (1ist [str]) - Table data with table factor and interpolation settings

* table (list [ndarray]) - list of numpy arrays of shape (N,2)

e value (1ist [float]) - value of each table

* label (str)— Header string

¢ embedded (bool) — True if table is embedded in an ‘X3Table’.

ing/writing of header (data and label)

clear ()
Remove all elements from the table

getIndex (value)
Returns index of table with value “value”

39

Disables read-

Parameters value (float) — value of the table
Returns index of table with “value”

Return type int

Raises IndexError - If table value is not in the list

insertTable (value, data)
Insert a new table (value, data) pair

Parameters

e value (float) - value of table to add

* data (ndarray) — data table as a numpy array with shape (N,2)
Raises

* ValueError — If table with value ‘value’ already exists

* ValueError — If data is not of shape N

remove (i)
Remove table of index i

class pyAPP7.Datatypes.X3Table
Holds a list of X2Tables.

This class holds a list of X2Tables and a value for each table.
Variables
* data (1ist [str]) - Table data with table factor and interpolation settings
e table (1ist [X2Table]) - list of X2Table instances
* value (1ist [float]) - value of each table
* label (str)— Header string

clear ()
Remove all elements from the table

insertTable (value, x2Table)
Insert a new table (value, x2Table) pair

Parameters
* value (float) — value of table to add
e x2Table (X2Table)— X2Table to insert
Raises
* ValueError — If table with value ‘value’ already exists
* ValueError — If x2Table is not of type X2Table

remove (i)
Remove table of index i

40

8.8 Mission Computations

class pyAPP7.Mission.MissionComputation (APP7Directory='C:\Program Files
(x86)\ALR Aerospace\APP 7 Professional
Edition’)

Class to execute APP and subsequently load the results.

This class is a helper class to execute APP mission computations. After creating an instance of this ob-
ject, execute the ‘run’ function. The result will be loaded into the ‘result’ attribute. ‘result’ is of type
MissionResult, see the documentation of the MissionResult class for further details.

Note: The ‘Parameter Study’ computation type can not be computed with the APP command line mode.

Examples

This example shows how to run a mission computation and obtain an instance of the mission result:

from pyAPP7 import Mission

misCmp = Mission.MissionComputation ()
misCmp.run (r'myMission.mis")
result = misCmp.getResult ()

This example assumes APP is installed in the default directory.
Variables
* output (str) — Path to the text file with the mission results written by APP

* result (MissionResult) — The result of the mission computation, parsed from
the ‘output’ text file

* misCompFile (Files.MissionComputationFile) — Instance of a Mission-
ComputationFile (APP .mis file). Is available once the method run was called

* db (Database) — Instance of a Database object
* inputfile (str) - Path to the APP mis file

printSegmentNames ()
Prints the name of the segments

printStores ()
Prints the name of the stores used in the mission

run (inputfile, imperial=False, suffix="_output', ParameterList="ParameterList_All.par")
This method runs APP7 using the command line mode and loads the results.

After the APP7 computation has terminated, the result is read into ‘result’.
Parameters
e inputfile (str)— path to the APP7 .mis file
e imperial (bool, optional)— setFalse for SIunits, True for imperial units
e suffix (string, optional)— suffix of the written result text filename

* ParameterList (string, optional)-filename of the parameter file. Has to
be in the pyAPP7 directory.

Returns True if successful, False otherwise.
Return type bool

Raises

41

e IOError — If the mission file (inputfile) does not exists

* IOError — If the aircraft file specified in the mission does not exists or if no aircraft
path was provided

* ValueError — If the computation type of the mission file is not set to ‘Single Mis-
sion’

class pyAPP7.Mission.MissionResult
This class can read the APP mission result text file.

Examples

This example shows how to read a mission result directly from a text file. This is useful to read results from
past mission computations, for example when conduction batch simulations:

from pyAPP7 import Mission

res = Mission.MissionResult.fromFile (r'myMission.mis_ouput.txt")

Variables

* output (dict) - Dictionary containing the mission flags, error text, number- and list
of variables

* segments (list [MissionResultSegment J)— A list of MissionResultSegment
class instances, holding the results of each segment

* initialSettings (MissionResultSegment ()) — The initial settings of the
mission
classmethod fromFile (filename)
Creates a new MissionResult instance from the path ‘filename’

Raises IOError — If the file cannot be opened

getVariableData (name)
Returns an array with all data of the variable starting with the name ‘name’

Use np.hstack() on the return value ‘mission_data’ to get a single array.
Parameters name (str)— name of the variable
Returns
¢ var_name (str) — Full name of the variable name
* mission_data (ndarray) — Variable data for all mission segments as a numpy array.
Raises ValueError — If the variable with name ‘name’ does not exists

getVariableIndex (name)
Returns the variable index starting with the name ‘name’

Parameters name (str)— name of the variable
Raises
* ValueError — If multiple variables starting with ‘name’ exist
* ValueError - If the variable with name ‘name’ does not exists

getVariablelist ()
Returns an ordered list of the variable names

getVariableName (idx)
returns the name of the variable at index idx

42

class pyAPP7.Mission.MissionResultSegment

Class used to store the result of a single mission segment. This class is used in the MissionResult class to
parse each segment.

Variables
* name (str)— Name of the segment

* data (ndarray) — Data table as a numpy array with shape (ndata,n_var). n_var is
stored in the MissionResult.output[‘n_var’]

* ndata (int)— Number of datapoints in the segment

8.9 Performance Chart Computations

class pyAPP7.Performance.PerformanceChart (APP7Directory='C:\\Program Files

(x86)\ALR Aerospace\APP 7 Profes-

_ sional Edition’)
Helper class to execute a performance chart computation from an existing .perf file.

Variables
* inputfile (str) - Path to the input .perf file
* perfFile (PerformanceChartFile)— Parsed input APP7 .perf file
* output (str) — Path to the resulting txt file
e result (PerformanceChartResult)— Result
* APP7Path (str) — Full path to the APP7 executable

Parameters APP7Directory (str, optional) — Path to the location of the APP7 exe-
cutable.

Raises ValueError — If the APP7 executable is not found in the specified directory

run (inputfile, imperial="False, suffix="_output’, par_file=None)
This method runs APP7 using the command line mode and load the results.

After the APP7 computation has terminated, the result is read into ‘result’.
Parameters
* inputfile (str)— path to the APP7 .perf file
e imperial (bool, optional)- setFalse for SI units, True for imperial units
e suffix (string, optional)— suffix of the written result text filename
Returns True if successful, False otherwise.
Return type bool

Raises

* IOError — If the performance file (inputfile) does not exists

* IOError - If the aircraft file specified in the performance file does not exists or if no
aircraft path was provided

class pyAPP7.Performance.PerformanceChartResult
Reads a result txt file written by the APP7 command line mode for a performance chart.

43

Examples

This example shows how to read a performance chart result directly from a text file. This is useful to read
results from past computations, for example when conduction batch computations:

from pyAPP7 import Performance

res = Performance.PerformanceChartResult.fromFile (r'myChart.perf_ ouput.txt')

Variables
* output (dict) — stores the result meta-data
* lines (List [ResultLine])—holds the data of each line of a performanc chart
classmethod fromFile (filename)
Creates a new PerformanceChartResult instance from the path ‘filename’
Raises IOError — If the file cannot be opened

getErrorText ()
Returns the error text

getLine (idx)
Returns the ResultLine at index idx

getLineData (idx)
Parameters idx (int)— Index of line
Returns numpy array of all data points, with shape (n_points,n_variables)
Return type ndarray

getLinelLabellist ()
Returns a list of all line labels

getLinelist ()
Returns the list of ResultLines

getLineVariableData (idx, varldx)
Parameters
e idx (int) - Index of line
e varIdx (int)— Index of variable
Returns numpy array with data points and shape (n,)
Return type ndarray

getVariableData (name)
Returns an array with all data of the variable starting with the name ‘name’

Parameters name (str)— name of the variable
Returns

¢ var_name (str) — Full name of the variable name

¢ line_data (ndarray) — Variable data for all chart lines as a numpy array.
Raises ValueError - If the variable with name ‘name’ does not exists

getVariableIndex (name)
Returns the variable index starting with the name ‘name’

Parameters name (str)— name of the variable

Raises

44

* ValueError — If multiple variables starting with ‘name’ exist
e ValueError — If the variable with name ‘name’ does not exists

getVariablelist ()
Returns an ordered list of the variable names

getVariableName (idx)
returns the name of the variable at index idx

isSuccessful ()
Returns True if the performance result was computed sucessfully

loadFromFile (filename)
Read a APP7 performance chart result

Parameters filename (str) — path to the results txt file written by APP7

class pyAPP7.Performance.ResultLine
Represents a line in an APP7 performance chart.

Variables
e label (str) - Label of the line
* value (str)— Value of the line
* ndata (int)— Number of data points of the line
* data (ndarray)— Data array of all points with shape (ndata,nvariables)

load (f)
This function is called by the PerformanceChartResult class, do not use directly. Reads a line from the
file handle f.

45

9 Version History

9.1 1.1 (2020-08-17)

» Database updated for APP 7.0.3.0
¢ Added capabilities to read and write new KTS/s TR and SEP envelope charts

9.2 1.0 (2019-06-17)

* Initial release, corresponds to APP 7.0.1.0

46

Index
A

Aero (class in pyAPP7.Files), 31
AircraftModel (class in pyAPP7.Files), 29

B

Battery (class in pyAPP7.Files), 31
Boolean (class in pyAPP7.Datatypes), 39

C

checkAircraftPath ()
(pyAPP7.Files.MissionComputationFile
method), 34
checkSettings ()
method), 33
clear () (pyAPP7.Datatypes.X2Table method), 39
clear () (pyAPP7.Datatypes.X3Table method), 40
Config (class in pyAPP7.Files), 30

E

ElectricPropulsionData
pYAPP7.Files), 33

(pyAPP7.Files.ProjectAircraft

(class in

F

FlightData (class in pyAPP7.Files), 37

fromFile () (pyAPP7.Files.AircraftModel
method), 29

fromFile () (pyAPP7. Files.MissionComputationFile
class method), 34

fromFile () (pyAPP7.Files.PerformanceChartFile
class method), 36

fromFile () (pyAPP7.Mission.MissionResult class
method), 42

class

fromFile () (pyAPP7.Performance.PerformanceChartResult

class method), 44

fromIndex () (pyAPP7.Files.PropulsionData class
method), 32

fromType () (pyAPP7.Files.PointPerfHelper class
method), 38

G

Gear (class in pyAPP7.Files), 31
GeneralData (class in pyAPP7.Files), 30
GenericElectricFuel (class in pyAPP7.Files),
33
GenericElectricPropulsionData (class in
PpYAPP7.Files), 33
GenericElectricThrust
PYAPP7.Files), 33
getAbsoluteAircraftPath ()
(pyAPP7.Files.MissionComputationFile
method), 35
getAbsoluteAircraftPath ()
(pyAPP7.Files.PerformanceChartFile
method), 36

(class in

getErrorText () (pyAPP7.Performance.PerformanceChartResult

method), 44
getIndex () (pyAPP7.Datatypes.X2Table method),

39
getLine () (pyAPP7.Performance.PerformanceChartResult

method), 44
getLineData () (pyAPP7.Performance.PerformanceChartResult

method), 44
getLinelLabellList ()

(pyAPP7.Performance.PerformanceChartResult

method), 44
getLinelist () (pyAPP7.Performance.PerformanceChartResult

method), 44
getLineVariableData ()

(pyAPP7.Performance.PerformanceChartResult

method), 44
getOptimizerSettings ()

(pyAPP7.Files.MissionComputationFile

method), 35
getVariableData ()

(pyAPP7.Mission.MissionResult method), 42
getVariableData ()

(pyAPP7.Performance.PerformanceChartResult

method), 44
getVariableIndex ()

(pyAPP7.Mission.MissionResult method), 42
getVariableIndex ()

(pyAPP7.Performance.PerformanceChartResult

method), 44
getVariableList ()

(pyAPP7.Mission.MissionResult method), 42
getVariableList ()
(pyAPP7.Performance.PerformanceChartResult
method), 45
getVariableName ()

(pyAPP7.Mission.MissionResult method), 42
getVariableName ()

(pyAPP7.Performance.PerformanceChartResult

method), 45

insertTable ()
method), 40

insertTable ()
method), 40

isSuccessful () (pyAPP7.Performance.PerformanceChartResult
method), 45

(pyAPP7.Datatypes.X2Table

(pyAPP7.Datatypes.X3Table

J

JetFuel (class in pyAPP7.Files), 32
JetPropulsionData (class in pyAPP7.Files), 32
JetThrust (class in pyAPP7.Files), 32

L

load () (pyAPP7.Files.AircraftModel method), 29

47

load () (pyAPP7.Files.MissionComputationFile
method), 35

load () (pyAPP7.Performance.ResultLine method),
45

loadFromFile () (pyAPP7.Files.AircraftModel
method), 30

ProjectAircraft (class in pyAPP7.Files), 33

ProjectAircraftSetting (class in
PYAPP7.Files), 35

PropElectricThrust (class in pyAPP7.Files), 33

Propeller (class in pyAPP7.Files), 33

PropFuel (class in pyAPP7.Files), 33

loadFromFile () (pyAPP7.Performance.Performance CuotResnipul sionData (class in pyAPP7.Files), 33

method), 45

M

Mass (class in pyAPP7.Files), 31

MisOptData (class in pyAPP7.Files), 35

MissionComputation (class in pyAPP7.Mission),
41

MissionComputationFile
PpYAPP7.Files), 34

MissionDefinition (class in pyAPP7.Files), 35

MissionResult (class in pyAPP7.Mission), 42

MissionResultSegment (class in
PpYAPP7.Mission), 42

MissionSegment (class in pyAPP7.Files), 35

(class in

N

newSolver () (pyAPP7.Files.PointPerfHelper
method), 38

NExtReal (class in pyAPP7.Datatypes), 38

F)

PerformanceChart (class in

PYAPP7.Performance), 43
PerformanceChartFile (class in pyAPP7.Files),

36
PerformanceChartResult

DPYAPP7.Performance), 43
PointPerfHelper (class in pyAPP7.Files), 37
PointPerfSolver (class in pyAPP7.Files), 36

(class in

PointSolveAccelEnvelope (class in
PYAPP7.Files), 36
PointSolveAccelTurnRate (class in

PYAPP7.Files), 37
PointSolveAltSEP (class in pyAPP7.Files), 37
PointSolveAltTurnRate (class in
PpYAPP7.Files), 37
PointSolveLFEnvelope (class in pyAPP7.Files),

36

PointSolveParaStudy (class in pyAPP7.Files),
36

PointSolveSEPEnvelope (class in
PYAPP7.Files), 36

PointSolveSEPTurnRate (class in

PpYAPP7.Files), 36
PointSolveThrustDrag (class in pyAPP7.Files),
37
printSegmentNames ()
(pyAPP7.Mission.MissionComputation
method), 41

PropThrust (class in pyAPP7.Files), 33
PropulsionData (class in pyAPP7.Files), 32

R

RangeExtenderPropulsionData
PYAPP7.Files), 33

RangeExtenderThrust (class in pyAPP7.Files),
33

remove () (pyAPP7.Datatypes.X2Table method), 40

remove () (pyAPP7.Datatypes.X3Table method), 40

ResArrayData (class in pyAPP7.Files), 37

ResultLine (class in pyAPP7.Performance), 45

(class in

run () (pyAPP7.Mission.MissionComputation
method), 41

run () (pyAPP7.Performance.PerformanceChart
method), 43

S

saveToFile () (pyAPP7.Files.AircraftModel
method), 30

Store (class in pyAPP7.Files), 33
StoreData (class in pyAPP7.Files), 34
StoreDatalist (class in pyAPP7.Files), 33

T

Text (class in pyAPP7.Files), 37
TOLParameter (class in pyAPP7.Files), 31

Vv

VariationData (class in pyAPP7.Files), 35

X

X0Table (class in pyAPP7.Datatypes), 39
X1Table (class in pyAPP7.Datatypes), 39
X2Table (class in pyAPP7.Datatypes), 39
X3Table (class in pyAPP7.Datatypes), 40

printStores () (pyAPP7.Mission.MissionComputation

method), 41

48

	Introduction
	Installation
	APP Command Line
	Upgrading from pyAPP6
	Authors
	User Guide
	Package Structure
	Reading and Writing APP Files
	Variables
	Mission Computations
	Performance Charts

	pyAPP7 Examples
	Imports & Constants
	Files
	Mission Computation
	Performance Charts

	Developer Interface
	AircraftModel
	MissionComputationFile
	PerformanceChartFile
	Common Classes
	Supporting Classes
	Data Types
	Tables
	Mission Computations
	Performance Chart Computations

	Version History
	1.1 (2020-08-17)
	1.0 (2019-06-17)

	Index

